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Language migration 1s important in software development
API mapping is an indispensable step for the migration
Existing works hinge on parallel data:

o Require lots of human effort for data labeling

o Require lots of parallel data for training

Our Vision:

Effective API mapping with less reliance on parallel data
(towards zero knowledge)

h

o Knowledge Learning for Cross

Language APl Mapping
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Key Idea
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Our Insight: Domain Adaptation
* Represent two languages as vector spaces X and Y
* Assume X and Y are similar in geometric arrangement
* Rotate source space X to align with target space Y
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Approach

A

* Adapt the two v
mapping matrix

Extract API sequences with types
Use Word2Vec for API embedding
Construct two language vector spaces
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K Comprise of two neural networks:
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STEP 1: Code Embedding STEP 2: Domain Adaptation STEP 3: Query

ector spaces with a * Query for mapping of an API x

* Mapping = nearest neighbor(Wx)
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Java.util ArrayList.toArray
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* Learn a mapping matrix W, such that:

System.Collections.§eneric.List.ContainsEIement
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Adversarial Learning

o Discriminator D (parameter Wy ) maximizes likelihood of
1dentifying an origin of an embedding

o Generator G (parameter W) prevents the discriminator from

doing so by making WX and Y as similar as possible

Discriminator D (Wp)
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Generator G (W)
— Yi=1log Py (source = True|Wx;) — }.i_, log Py, (source = False|
— Yizqlog Py (source = False|Wx;) — Y.i_
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/ Refinement

* Frequent APIs have higher mapping accuracy. They can b
utilized as knowledge to refine Adversarial Learning

* Create mapping candidates X¢ and Ys based on following
heuristics:
o Signature-based mapping candidates
o Top-K frequent mapping candidates
o Cosine similarity threshold mapping candidates

* Derive W iteratively from Procrustes Analysis of X¢ and Y5

Heuristic approaches to infer

J‘ w _’ mapping candidates
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Procrustes Analysis
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O Training data does not need to be parallel and can be collected independently > Reducing human efforts

-

-

* Data: Java and C# repositories on Github, 2 million files

* Baseline: API2API [4]

* Metric: Top-k accuracy (k= 1,5,10)

* Ground truth : 860 mappings from Java2CSharp as the
evaluation dataset, 2 folds validation
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— argming |[WXs — Ys|| = UVT
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* Consider more advanced Adversarial Learning techniques
* Explore on API sequence mapping with zero knowledge
* Investigate on API mapping between languages that are
different in geometric arrangement
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