< SMU

-

Towards Zer

SINGAPORE MANAGEMENT
UNIVERSITY

-~

Language migration 1s important in software development
API mapping is an indispensable step for the migration
Existing works hinge on parallel data:

o Require lots of human effort for data labeling

o Require lots of parallel data for training

Our Vision:

Effective API mapping with less reliance on parallel data
(towards zero knowledge)

h

o Knowledge Learning for Cross

Language APl Mapping

Nghi D. Q. Bui

Key Idea
-

Our Insight: Domain Adaptation
* Represent two languages as vector spaces X and Y
* Assume X and Y are similar in geometric arrangement
* Rotate source space X to align with target space Y

Refinement

-

)

Approach

A

* Adapt the two v
mapping matrix

Extract API sequences with types
Use Word2Vec for API embedding
Construct two language vector spaces

Java Context
Extraction &
Embedding

Java Vector
Space X

(

. E————
C# Vector ~
Space Y

Adversarial
Learning

C# Context
Extraction &
Embedding

K Comprise of two neural networks:

D: Lpy(Wp|W) =
G: Le(W|Wp) =

ar gminw‘ |[WX

J

STEP 1: Code Embedding STEP 2: Domain Adaptation STEP 3: Query

ector spaces with a * Query for mapping of an API x

* Mapping = nearest neighbor(Wx)

lava.util. ArrayList.new
System.Collections.Generic.List.New

_yH }f

\ 1
Refinement Joined Vector
) Space WX UY |

|

Java.util ArrayList.toArray

System.Collections.generic.List.ToArray
: java.util ArrayList.contains

(

—

\_

________________________________________________________________________________________

* Learn a mapping matrix W, such that:

System.Collections.§eneric.List.ContainsEIement

_____________________________________________________________________________________________

Adversarial Learning

o Discriminator D (parameter Wy ) maximizes likelihood of
1dentifying an origin of an embedding

o Generator G (parameter W) prevents the discriminator from

doing so by making WX and Y as similar as possible

Discriminator D (Wp)

\_/

Generator G (W)
— Yi=1log Py (source = True|Wx;) — }.i_, log Py, (source = False|
— Yizqlog Py (source = False|Wx;) — Y.i_

~

Wy;)
1 log Py (source = True|Wy;)

/ Refinement

* Frequent APIs have higher mapping accuracy. They can b
utilized as knowledge to refine Adversarial Learning

* Create mapping candidates X¢ and Ys based on following
heuristics:
o Signature-based mapping candidates
o Top-K frequent mapping candidates
o Cosine similarity threshold mapping candidates

* Derive W iteratively from Procrustes Analysis of X¢ and Y5

Heuristic approaches to infer

J‘ w _’ mapping candidates

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

.............................................................

Procrustes Analysis

[Adversarial

\Learning

RS

O Training data does not need to be parallel and can be collected independently > Reducing human efforts

-

-

* Data: Java and C# repositories on Github, 2 million files

* Baseline: API2API [4]

* Metric: Top-k accuracy (k= 1,5,10)

* Ground truth : 860 mappings from Java2CSharp as the
evaluation dataset, 2 folds validation

| Evalustion

ACCURACY
1
) I I
TOP-1 TOP-5 TOP-10

B Adversarial Learning + Refinement & API2API

B Adversarial Learning B API2API (no seed)

W,

N

— argming |[WXs — Ys|| = UVT

with US VT = SVD(}{gy

Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen (ASE 2014).
Xie, Lu Zhang, and Qing Wang. (ICSE 2010)
Gu, Hongyu Zhang, Dongme1 Zhang, and Sunghun Kim. 2017, (IICAI 2017)

[4] “API2API. Exploring APl embedding for API usages and applications”, by Trong
Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. (ICSE 2017).

[1] “Statistical learning approach for mining API usage mappings for code migration”, by Anh
[2] “Mining API mapping for language migration”, by Hao Zhong, Suresh Thummalapenta, Tao

[3] “DeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning”, by Xiaodong

4 )
* Consider more advanced Adversarial Learning techniques
* Explore on API sequence mapping with zero knowledge
* Investigate on API mapping between languages that are
different in geometric arrangement
N y
- References * ~

Duc
v




