

Towards Zero Knowledge Learning for Cross Language API Mapping

Nghi D. Q. Bui

Information Systems

Motivation

- Language migration is important in software development
- API mapping is an indispensable step for the migration
- Existing works hinge on parallel data:
 - o Require lots of human effort for data labeling
 - o Require lots of parallel data for training

Our Vision:

Effective API mapping with less reliance on parallel data (towards zero knowledge)

Key Idea

Our Insight: Domain Adaptation

- Represent two languages as vector spaces X and Y
- Assume X and Y are similar in geometric arrangement
- Rotate source space X to align with target space Y

Approach

STEP 1: Code Embedding

- Extract API sequences with types
- Use Word2Vec for API embedding
- Construct two language vector spaces

STEP 2: Domain Adaptation

- Adapt the two vector spaces with a mapping matrix
- Learn a mapping matrix W, such that:

STEP 3: Query

- Query for mapping of an API x
- Mapping = nearest neighbor(Wx)

Adversarial Learning

- Comprise of two neural networks:
 - o **Discriminator D** (parameter W_D) maximizes likelihood of identifying an origin of an embedding
 - o *Generator G* (parameter W) prevents the discriminator from doing so by making WX and Y as similar as possible

 $\mathbf{D}: L_D(W_D|W) = -\sum_{i=1}^n \log P_{W_D}(source = True|Wx_i) - \sum_{i=1}^n \log P_{W_D}(source = False|Wy_i)$ $\mathbf{G}: L_G(W|W_D) = -\sum_{i=1}^n \log P_{W_D}(source = False|Wx_i) - \sum_{i=1}^n \log P_{W_D}(source = True|Wy_i)$

Refinement

- Frequent APIs have higher mapping accuracy. They can be utilized as knowledge to refine Adversarial Learning
- Create mapping candidates X_S and Y_S based on following heuristics:
 - Signature-based mapping candidates
 - o Top-K frequent mapping candidates
 - Cosine similarity threshold mapping candidates
- Derive W iteratively from Procrustes Analysis of X_S and Y_S

Training data does not need to be parallel and can be collected independently -> Reducing human efforts

Evaluation

- Data: Java and C# repositories on Github, 2 million files
- Baseline: API2API [4]
- Metric: Top-k accuracy (k = 1,5,10)
- **Ground truth**: 860 mappings from Java2CSharp as the evaluation dataset, 2 folds validation

ACCURACY 0.5 TOP-1 TOP-5 TOP-10 Adversarial Learning + Refinement API2API Adversarial Learning API2API (no seed)

Future work

- Consider more advanced Adversarial Learning techniques
- Explore on API sequence mapping with zero knowledge
- Investigate on API mapping between languages that are different in geometric arrangement

References

[1] "Statistical learning approach for mining API usage mappings for code migration", by Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen (ASE 2014). [2] "Mining API mapping for language migration", by Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. (ICSE 2010)

[3] "DeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning", by Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017, (IJCAI 2017)

[4] "API2API: Exploring API embedding for API usages and applications", by Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. (ICSE 2017).