
Towards Zero Knowledge Learning for Cross
Language API Mappings

Nghi D. Q. Bui
School of Information Systems, Singapore Management University

dqnbui.2016@phdis.smu.edu.sg

Abstract—Programmers often need to migrate programs from
one language or platform to another in order to implement
functionality, instead of rewriting the code from scratch. How-
ever, most techniques proposed to identify API mappings across
languages and facilitate automated program translation require
manually curated parallel corpora that contain already mapped
API seeds or functionally-equivalent code using the APIs in
two different languages so that the techniques can have an
anchor to map APIs. To alleviate the need of curating parallel
data and to generalize the applicability of program translation
techniques, we develop a new automated approach for identifying
API mappings across languages based on the idea of unsupervised
domain adaption via Generative Adversarial Network (GAN) and
an additional refinement procedure that can transform two vector
spaces to align the API vectors in the two spaces without the
need of manually provided anchors. We show that our approach
can identify API mappings more accurately than Api2Api [22]
without the need of curated parallel seeds.

I. INTRODUCTION

API mappings across languages or platforms [23], [25], [29]
can be very useful for various tasks in software engineering,
e.g., software porting and reuse [2], [4], [10], [13], [14], [26].

Although there exist some studies that can construct API
mappings across languages, those techniques have a common
shortcoming among them that they require certain explicit
knowledge about the API mappings in different languages.
Either they require a large body of parallel program corpora
that contain functionally equivalent code that use APIs in two
different languages to be mapped (MAM [29] and StaMiner
[17]), or they requires manual efforts to identify a large set
of mapped APIs as the seeds in order to align APIs across
two whole different vector spaces (Api2Api [22]), or even
different form of parallel data, which is the natural language
descriptions embedded in programs in different programming
languages, to map APIs (DeepAM [9])

The existing approaches require a large amount of curated
parallel data in the form of either code implementing the same
functionality in different languages or mapping seeds used to
identify some mapped code elements in different languages to
bootstrap the whole mapping process. Curating such parallel
data is non-trivial and often requires manual efforts and prior
knowledge of human developers.

Our research contribution is to answer the key question:
“Can we learn API mappings across languages with (almost)
zero knowledge?” I.e., with suitable techniques, we shall be
able to mine API mappings from large sets of programs

in different languages (e.g., readily available from Github)
without the need of manually curated parallel data.

Our intuition for resolving this question is that, given two
large codebases in two languages, certain similarities in the
distributions of APIs and code elements used in the two
codebases may be exploited to discover API mappings across
languages without manually specified parallel corpora. We
realize the intuition by adapting word embedding techniques
to construct vector spaces for individual languages and by
adapting the Generative Adversarial Network (GAN) (e.g.,
[7]), which is an unsupervised domain adaptation technique, to
transform vector spaces to align with each other with (almost)
zero knowledge. In addition, we introduce a refinement proce-
dure for GAN to improve the alignment between vector spaces
based on various heuristics for inferring possible alignments.

II. BACKGROUND AND RELATED WORK

For the problem of cross-language program translation,
a.k.a. language migration, much work has utilized various
statistical language models for tokens [19], phrases [11], [20],
[21], or APIs [6], [17], [18], [24], [28], [29], to facilitate
translation. A few studies have used word embedding, similar
to our work, for API mapping and migration (e.g., [8], [9],
[22], [24]), but our work does not need curated parallel corpora
or mapping seeds. Tools for translating code among specific
languages in practice (e.g., Java2CSharp [1]) are useful, but
they are also often dependent on manually defined rules
specific to grammars of individual languages.

For the techniques used to construct and transform vector
spaces, we get inspirations from recent progress in NLP that
use GAN to alleviate the need of parallel corpora (e.g., [3], [5],
[7]), which provides the technical foundation for our work.

Formally, given two vector spaces, X = {x1, x2, ..., xn} as
the source and Y = {y1, y2, ..., ym} as the target, containing n
and m API embeddings for two languages, the goal is to find
a linear mapping W ∗ such that W ∗ = argminW ||W ∗X −
Y ||). We can build two neural networks according to GAN to
approximate W ∗: one is a discriminator, trained to maximize
its ability to classify any sample data from Y as belonging to
Y , while minimizing its mistakes in classifying any sample
data from W ∗X as belonging to Y ; the other is a generator,
trained to fool the discriminator by generating samples taken
from W ∗X as similar to Y as possible. The overall training
goal is to maximize the ability of the generator to produce a
transformation matrix W 0 so that W 0 ∗X is close to Y . We

1

Fig. 1. Overview of our vector space alignment approach.

say that the vector space of X has been adapted (or, aligned)
to Y via W 0 when the training converges.

III. APPROACH OVERVIEW

The overview of our approach is depicted in Figure 1, which
comprises of three main substeps: generate code and API
embeddings, domain adaptation to align the distributions and
output the mapping, and the refinement procedure to refine the
mapping.

A. Code and API Embedding

We traverse through the ASTs of programs to get the code
corpus, which includes APIs and important code elements (e.g
programming keywords). We then use the Skip-gram model
[12] to train the embeddings for the code corpus in each
language to get the vector space for the code elements and
APIs of the language.

B. Vector Space Alignment

First, the two vector spaces for APIs in two different
languages are adapted by GAN to make them aligned with
each other, so-called the domain adaptation step. The output
of this step is a transformation matrix W, where W serves
as the mapping between the two vector spaces, i.e., the two
vector spaces are merged in one joint embedding through W.

Second, a refinement procedure is applied to refine the
transformation matrix. The GAN learning without parallel
corpora assumes the distributions in the two vector spaces are
similar, which may not be completely true for APIs, and the
GAN learning may not reach optimal results. The intuition of
this step is based on the assumption that the domain adaptation
can, at least, produce a good initial mapping between the
vector spaces. Then from the mapping, one can infer good
synthetic seeds based on some heuristics. And these seeds can
be used as the input for the same system in a self-learning
fashion by assuming that the output mapping dictionary was
indeed better than the original one, should serve to learn a
better mapping and, consequently, an even better dictionary in
the next iteration.

We propose auto-seeding heuristics to provide synthetic
parallel mapping seeds using the W just learned with adver-
sarial training. Specifically, we consider that (1) a simple text
comparison to identify APIs having the same class and method
names in two languages, (2) the top-K most frequent words,
and (3) all API pairs that are “similar enough” in the joint
vector space aligned by GAN, can be good seeds to use for the
refinement step. The refinement step takes several iterations
and validates over a testing set until satisfying the convergence
criteria (i.e., the validation result no longer gets better).

TABLE I
API MAPPING RESULTS FOR PRECISION AT 1,5,10 (P@1, P@5, P@10)

Settings P@1 P@5 P@10

GAN 0.22 0.30 0.37
GAN + Refinement 0.34 0.53 0.63
Api2Api (no seed) 0.02 0.05 0.11
Api2Api 0.30 0.43 0.52

C. API Mapping Generation
After all API embeddings are generated and aligned, API

mappings will be actually generated by near neighbor queries:
Given an API in one language, the vector of the API is
used to retrieve its top-k nearest neighbor vectors from the
other language, and the APIs corresponding to those neighbor
vectors will be reported as possible mappings of the input API.

IV. EMPIRICAL EVALUATION

We collect large sets of Java and C# programs from Github,
each containing approximately 2 millions of files. As the
main advantage of our approach, there is no need for human
intervention to specify which code in Java is functionally
equivalent to which code in C#.

We take 860 API mappings manually defined in
Java2CSharp [1] as the ground truth for evaluating our ap-
proach. We compare our approach with Api2Api [22] as
it appears to be the state-of-the-art for such a task. Since
Api2APi requires seeds to train its model, we split the 860
mappings evenly into two folds: one fold is the training
data for Api2APi, and the other is the testing data for both
approaches. Then we swap the training fold and testing fold
for training and testing, respectively, and we take the average
of the testing results. Table I compares the precisions of the
mapping results of both approaches. If we do not provide
seeds to Api2Api, its precisions are very low. If only GAN is
applied, our approach can achieve reasonable precisions even
without any prior knowledge. With the additional refinement
procedure, our results are significantly better than Api2Api.

V. CONCLUSION AND FUTURE WORK

This work proposes a domain adaptation approach to au-
tomatically construct and align vector spaces for code with
zero knowledge. From the preliminary results, we can outper-
form the state-of-the-art technique for the API mapping task
without the need for human effort to curate mapping seeds.
A limitation in our approach is that we still need some seeds,
even only a small set from simple text comparison heuristic,
to refine the mapping. In the future, we will explore more on
the GAN so that it can automatically align the vector spaces
with zero human intervention.

In addition, domain adaptation techniques may also be
useful for other software engineering tasks that involve two
different domains targeted by transfer learning [15], [16], [27],
such as cross-language program classification, code summa-
rization, cross-language/project bug prediction. As such, it will
be interesting if two domains can be adapted with as little data
as possible. In the future, we will explore more variants of
GAN to solve such interesting domain adaptation problems.

2

REFERENCES

[1] Java2csharp. https://github.com/codejuicer/java2csharp.
[2] V. Agarwal, S. Goyal, S. Mittal, and S. Mukherjea. MobiVine: A

middleware layer to handle fragmentation of platform interfaces for
mobile applications. In Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’09, pages 24:1–
24:10, Berlin, Heidelberg, 2009. Springer-Verlag.

[3] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, and H. Jégou. Word
translation without parallel data. CoRR, abs/1710.04087, 2017.

[4] M. El-Ramly, R. Eltayeb, and H. A. Alla. An experiment in automatic
conversion of legacy java programs to c#. In IEEE/ACS International
Conference on Computer Systems and Applications (AICCSA), pages
1037–1045, 2006.

[5] Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by
backpropagation. In Proceedings of the 32nd International Conference
on Machine Learning (ICML), pages 1180–1189, 2015.

[6] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring likely
mappings between apis. In Software Engineering (ICSE), 2013 35th
International Conference on, pages 82–91. IEEE, 2013.

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial
networks. CoRR, abs/1406.2661, 2014.

[8] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep API learning. In
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 631–642, November
13-18 2016.

[9] X. Gu, H. Zhang, D. Zhang, and S. Kim. DeepAM: Migrate APIs with
multi-modal sequence to sequence learning. In 26th International Joint
Conference on Artificial Intelligence (IJCAI), pages 3675–3681, August
19-25 2017.

[10] J.-L. Hainaut, A. Cleve, J. Henrard, and J.-M. Hick. Migration of Legacy
Information Systems, pages 105–138. Springer Berlin Heidelberg, 2008.

[11] S. Karaivanov, V. Raychev, and M. Vechev. Phrase-based statistical
translation of programming languages. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! 2014, pages 173–184, New York,
NY, USA, 2014. ACM.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013.

[13] J. D. Mooney. Portability and reusability: Common issues and differ-
ences. In ACM 23rd Annual Conference on Computer Science, CSC
’95, pages 150–156, 1995.

[14] M. Mozumdar, F. Gregoretti, L. Lavagno, and L. Vanzago. Porting
application between wireless sensor network software platforms: Tinyos,
mantis and zigbee. pages 1145–1148, 09 2008.

[15] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. Heterogeneous defect
prediction. IEEE Transactions on Software Engineering, 44(9):874–896,
Sep. 2018.

[16] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proceedings
of the 2013 International Conference on Software Engineering, pages
382–391, 2013.

[17] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical
learning approach for mining API usage mappings for code migration.
In ACM/IEEE International Conference on Automated Software Engi-
neering (ASE), pages 457–468, 2014.

[18] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical
learning of API mappings for language migration. In 36th International
Conference on Software Engineering - Companion (ICSE), pages 618–
619, May 31 - June 07 2014.

[19] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Lexical statistical
machine translation for language migration. In Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 651–654, August 18-26 2013.

[20] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-conquer
approach for multi-phase statistical migration for source code (T).
In 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 585–596, November 9-13 2015.

[21] A. T. Nguyen, Z. Tu, and T. N. Nguyen. Do contexts help in
phrase-based, statistical source code migration? In IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
155–165, October 2-7 2016.

[22] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen. Exploring
API embedding for API usages and applications. In 39th International
Conference on Software Engineering (ICSE), pages 438–449, 2017.

[23] R. Pandita, R. Jetley, S. D. Sudarsan, T. Menzies, and L. Williams.
TMAP: discovering relevant API methods through text mining of API
documentation. Journal of Software: Evolution and Process, 29(12),
2017.

[24] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen. Statistical
migration of API usages. In 39th International Conference on Software
Engineering - Companion Volume (ICSE), pages 47–50, May 20-28
2017.

[25] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated api property inference techniques. IEEE Trans. Softw. Eng.,
39(5):613–637, May 2013.

[26] M. Shoaib, A. Ishaq, M. A. Ahmad, S. Talib, G. Mustafa, and A. Ahmed.
Software migration frameworks for software system solutions: A sys-
tematic literature review. INTERNATIONAL JOURNAL OF ADVANCED
COMPUTER SCIENCE AND APPLICATIONS, 8(11):192–204, 2017.

[27] S. Yan, B. Shen, W. Mo, and N. Li. Transfer learning for cross-platform
software crowdsourcing recommendation. In 24th Asia-Pacific Software
Engineering Conference (APSEC), pages 269–278, Dec 2017.

[28] H. Zhong, S. Thummalapenta, and T. Xie. Exposing behavioral dif-
ferences in cross-language API mapping relations. In Proceedings of
16th International Conference on Fundamental Approaches to Software
Engineering (FASE), Held as Part of the European Joint Conferences
on Theory and Practice of Software (ETAPS), pages 130–145, March
16-24 2013.

[29] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE), pages 195–204, May 1-8 2010.

3

