
Towards Robust Models of Code via
Energy-Based Learning on Auxiliary Datasets

Nghi D. Q. Bui
dqnbui.2016@smu.edu.sg

Singapore Management University & Huawei Ireland
Research Center

Yijun Yu
yijun.yu@huawei.com

Huawei Ireland Research Center

ABSTRACT
Existing approaches to improving the robustness of source code
models concentrate on recognizing adversarial samples rather than
valid samples that fall outside of a given distribution, which we
refer to as out-of-distribution (OOD) samples. To this end, we pro-
pose to use an auxiliary dataset (out-of-distribution) such that,
when trained together with the main dataset, they will enhance the
model’s robustness. We adapt energy-bounded learning objective
function to assign a higher score to in-distribution samples and a
lower score to out-of-distribution samples in order to incorporate
such out-of-distribution samples into the training process of source
code models. Our evaluation results demonstrate a greater robust-
ness for existing source code models to become more accurate at
recognizing OOD data while being more resistant to adversarial
attacks at the same time.

ACM Reference Format:
Nghi D. Q. Bui and Yijun Yu. 2022. Towards Robust Models of Code via
Energy-Based Learning on Auxiliary Datasets. In 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’22), October
10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION
Learning code representations (a.k.a. embeddings) and developing
a prediction model for programs have been found to be beneficial
for a variety of software engineering tasks [4–6, 8, 9, 15, 20, 21, 25].
However, existing source code models suffer from two kinds of
robustness problems: (1) adversarial robustness: small, seemingly
innocuous perturbations to the input that lead to incorrect predic-
tions [2, 17, 24]; (2) out-of-distribution (OOD) uncertainty arises
when a machine learning model sees an input that differs from its
training data, and while still predicting on an existing class label
by the model regardless. To the best of our knowledge, adversarial
robustness for code has been studied recently [2, 17–19, 23, 24],
while the OOD detection has been neglected in the research on the
robustness of code models. We seek to address the OOD robustness
problem by proposing a novel learning method that brings two
benefits together: (1) making source code models more resilient
to adversarial samples; (2) enabling the detection of OOD samples.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

To tackle this problem, we aim to enable source code models to
say "I don’t know" whenever possible instead of making a blind
prediction by pretending that they knew the answer. We propose
to use an auxiliary dataset in addition to the main dataset to train
for a specific code learning task. The auxiliary dataset is used as
an external resource to improve the model’s prediction capability,
i.e., the model will know when not to predict something outside of
its knowledge. A collection of unlabeled code snippets can be used
as the auxiliary dataset. As a result, the auxiliary dataset has the
benefit of being inexpensive to collect because one does not need
to label its elements. Now, we train the model to generate a single
scalar value as the measurement score, so that in-distributions have
high scores and out-of-distributions have low scores. We propose
to adapt the energy-bounded objective function for the auxiliary
dataset that will be jointly trained with the cross-entropy objective
function for the main dataset. The additional knowledge from the
auxiliary dataset is leveraged to the model during this jointly train-
ing phase by pushing the OOD samples further away, in distance,
from the in-distribution samples. Since the energy-bounded learn-
ing method is agnostic to the cross-entropy objective functions, it is
applicable to a wide range of source code models and a several pro-
gramming tasks. In this work, we evaluated the method on the code
classification task train on the Tree-based CNN [13]. The results
show that training the source code model with an auxiliary dataset
on the energy-bounded objective improves the model’s robustness
in terms of OOD detection robustness and adversarial robustness.

2 OUR APPROACH
First, an auxiliary dataset including additional code samples will
be treated as out-distribution data, while the samples in the main
dataset will be treated as in-distribution data. The code samples in
the OOD dataset will be encoded in exactly the same way as the
samples in the main dataset, except for the steps after obtaining the
code embeddings and logits: the energy of both the auxiliary and
main code embeddings are computed using an energy-bounded loss
function. The intuition of introducing the energy-bound loss func-
tion is to assign distinct score ranges to separate out-of-distribution
from in-distribution data. The cross-entropy and energy-bounded
loss functions are trained jointly in our end-to-end learning frame-
work as the total loss. Here we present the energy-bounded loss
function [12], in which the neural network is designed to purposely
generate a gap between in-distribution and out-of-distribution data
by assigning lower energy to in-distribution data and larger energy
to out-of-distribution data. Specifically, the energy-based classifier
is trained using the following objective function:

min
\

E(𝑥,𝑦)∼Dtrain
in

[− log 𝐹𝑦 (𝑥)] + _ · 𝐿energy (1)

ASE ’22, October 10–14, 2022, Rochester, MI, USA Nghi D. Q. Bui and Yijun Yu

(a) FPR95: 99.71 (b) FPR95: 68.62 (c) FPR95: 0.00

Figure 1: Distribution of softmax scores vs. energy scores from TBCNN-CE vs. TBCNN-EB. (a) FPR95 = 99.71 for the softmax confidence score
derived from the TBCNN-CE model. (b) FPR95 = 68.62 for the energy score derived from the TBCNN-CE model. (c) FPR95 = 0.00 for the energy
score derived from the TBCNN-EB model.

, where 𝐹 (𝑥) is the softmax output of the classification model and
Dtrain

in is the in-distribution training data. The overall training ob-
jective combines the standard cross-entropy loss, along with a
regularization loss defined in terms of energy:

𝐿energy = E(𝑥in,𝑦)∼Dtrain
in

(max(0, 𝐸 (𝑥in) −𝑚in))2+E𝑥out∼

Dtrain
out (max(0,𝑚out − 𝐸 (𝑥out)))2

(2)

, where Dtrain
out is the unlabeled auxiliary OOD training data.

3 EVALUATION
Datasets: For in-distribution dataset, we use the POJ dataset [14]

which comprises of 52,000 C programs of 104 classes. For out-
distribution dataset, we use C data from Project CodeNet [16], a
large-scale dataset in multiple programming languages. We use
Nicad [3] to remove all of the potential clones that may appears.
Then, we randomly sample 60k samples from the OOD datasets
to ensure that the data is balanced with the POJ. Then for both
the in- and out- distribution dataset, we split them into train-
ing/testing/validation with the ratio 70/20/10 into data portions
called 𝑖𝑛− 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑖𝑛− 𝑡𝑒𝑠𝑡𝑖𝑛𝑔, 𝑖𝑛− 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and 𝑜𝑢𝑡 − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,
𝑜𝑢𝑡 − 𝑡𝑒𝑠𝑡𝑖𝑛𝑔, 𝑜𝑢𝑡 − 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛.

Training Settings: We train the models using two different loss
functions. The first one is cross-entropy loss function used in most
of the source code models [22](CE). The second one is the energy-
bounded loss function we presented in this study (Equation ??)(EB).
The reason is that we want to see how well the model trained on
EB loss compares to the same model trained on CE loss. We choose
code classification [13] because it is generic and can represent for
the family of classification-based tasks in software engineering,
such as malware classification, patch identification, bug triage, etc.
Even though the names are different, the general goal is similar, i.e.,
to classify a piece of code into a given class.

Metrics: We choose false positive rate at 𝑁% true positive rate
(FPR𝑁) as the metrics for evaluation. The FPR𝑁 metric [1, 10, 11]
is the probability that an in-distribution example (negative) raises a
false alarmwhen𝑁% of anomalous examples (positive) are detected,
so a lower FPR𝑁 is better.

Baselines: In addition to the energy-bounded loss function, we
use the softmax score as a baseline to compare against. Note that
softmax score has been used as a strong baseline [7] to detect OODs
in machine learning.

Evaluation Results: Figure 1 compares the energy and softmax
score histogram distributions, derived from the TBCNN model
trained on cross-entropy loss (TBCNN-CE), and another TBCNN
model trained on energy-bound loss (TBCNN-EB) for the code clas-
sification task. As we can see in Figure 1a, the softmax histograms
derived from TBCNN-CE for in- and out- distribution makes it dif-
ficult to distinguish the two distributions, resulting in FPR95 value
of 99.71%. On the other hand, using the energy histograms derived
from TBCNN-CE in Figure 1b makes it better to distinguish the two
distributions, resulting in FPR95 value of 68.62%. Finally, Figure 1c
shows the energy histograms derived from TBCNN-EB, resulting
in the perfect value of FPR95=0.0%. This demonstrates the superior
performance of the energy-bound learning model trained with the
auxiliary dataset in detecting OOD samples.

4 DISCUSSION & CONCLUSION
We proposed to adapt the energy-bound loss as an alternative
for the cross-entropy loss commonly used to train source code
models. Along with the main dataset (in-distribution dataset), the
energy-bounded loss is trained using an auxiliary dataset (out-
of-distribution dataset). We showed that this training technique
improves the robustness of source code models while preserving
their predictive ability and the energy score produced from such
models is used to detect code snippets that are out-of-distributions.
The results of our evaluation on code classification task indicate
that the energy-bound score is much better than the softmax score
for the OOD detection task. It is therefore recommendable to
consider this alternative in classification-based code learning.

Our technique was evaluated solely on classification-based tasks,
but many programming problems, such as code summarization and
program translation, could be formulated differently. These two
tasks are related to translation and generation tasks in general, and
it is necessary to quantify the uncertainty of the translated results,
i.e., the model should not produce incorrect translation results if

Towards Robust Models of Code via
Energy-Based Learning on Auxiliary Datasets ASE ’22, October 10–14, 2022, Rochester, MI, USA

the output is uncertain. More effort is needed to propose methods
for dealing with such translation- and generation-based tasks.

REFERENCES
[1] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. 2016.

Learning local feature descriptors with triplets and shallow convolutional neural
networks.. In Bmvc, Vol. 1. 3.

[2] Pavol Bielik and Martin Vechev. 2020. Adversarial Robustness for Code. arXiv
preprint arXiv:2002.04694 (2020).

[3] James R. Cordy and Chanchal K. Roy. 2011. The NiCad Clone Detector. In
The 19th IEEE International Conference on Program Comprehension, ICPC 2011,
Kingston, ON, Canada, June 22-24, 2011. IEEE Computer Society, 219–220. https:
//doi.org/10.1109/ICPC.2011.26

[4] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. 2013. Large-scale malware
classification using random projections and neural networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, 3422–3426.

[5] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
40th ICSE. 933–944.

[6] XiaodongGu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM:
Migrate APIs with Multi-modal Sequence to Sequence Learning. In International
Joint Conference on Artificial Intelligence (Melbourne, Australia). 3675–3681.

[7] DanHendrycks and KevinGimpel. 2016. A baseline for detectingmisclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

[8] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In International Conference on Program Comprehension. ACM, 200–
210.

[9] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY: a code-to-code search engine. 946–957.

[10] Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. 2016. Learning local image
descriptors with deep siamese and triplet convolutional networks by minimising
global loss functions. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 5385–5394.

[11] Si Liu, Risheek Garrepalli, Thomas Dietterich, Alan Fern, and Dan Hendrycks.
2018. Open category detection with PAC guarantees. In International Conference
on Machine Learning. PMLR, 3169–3178.

[12] Weitang Liu, Xiaoyun Wang, John D Owens, and Yixuan Li. 2020. Energy-based
out-of-distribution detection. arXiv preprint arXiv:2010.03759 (2020).

[13] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural
networks over tree structures for programming language processing. In AAAI
Conference on Artificial Intelligence.

[14] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. 1287–1293.

[15] R. Nix and J. Zhang. 2017. Classification of Android apps and malware using deep
neural networks. In International Joint Conference on Neural Networks. 1871–1878.

[16] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladmir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al.
2021. Project CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity
of Coding Tasks. arXiv preprint arXiv:2105.12655 (2021).

[17] Md Rabin, Rafiqul Islam, Nghi DQ Bui, Yijun Yu, Lingxiao Jiang, and Moham-
mad Amin Alipour. 2020. On the Generalizability of Neural Program Analyzers
with respect to Semantic-Preserving Program Transformations. arXiv preprint
arXiv:2008.01566 (2020).

[18] Md Rafiqul Islam Rabin, Ke Wang, and Mohammad Amin Alipour. 2019. Test-
ing Neural Program Analyzers. In 34th IEEE/ACM International Conference on
Automated Software Engineering (Late Breaking Research-Track).

[19] Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, Somesh
Jha, and Thomas Reps. 2020. Semantic Robustness of Models of Source Code.
arXiv preprint arXiv:2002.03043 (2020).

[20] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish
Chandra. 2018. Retrieval on Source Code: A Neural Code Search. In 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming Languages
(Philadelphia, PA, USA). 31–41. https://doi.org/10.1145/3211346.3211353

[21] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving Automatic Source Code Summarization via Deep
Reinforcement Learning. In 33rd ASE (Montpellier, France). New York, NY, USA,
397–407. https://doi.org/10.1145/3238147.3238206

[22] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys
Poshyvanyk. 2020. A Systematic Literature Review on the Use of Deep Learning
in Software Engineering Research. arXiv preprint arXiv:2009.06520 (2020).

[23] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models
of code. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1–30.

[24] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating
Adversarial Examples for Holding Robustness of Source Code Processing Models.

In 34th AAAI Conference on Artificial Intelligence.
[25] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019.

Devign: Effective Vulnerability Identification by Learning Comprehensive
Program Semantics via Graph Neural Networks. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 10197–10207.
http://papers.nips.cc/paper/9209-devign-effective-vulnerability-identification-
by-learning-comprehensive-program-semantics-via-graph-neural-networks

https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3238147.3238206
http://papers.nips.cc/paper/9209-devign-effective-vulnerability-identification-by-learning-comprehensive-program-semantics-via-graph-neural-networks
http://papers.nips.cc/paper/9209-devign-effective-vulnerability-identification-by-learning-comprehensive-program-semantics-via-graph-neural-networks

	Abstract
	1 Introduction
	2 Our Approach
	3 Evaluation
	4 Discussion & Conclusion
	References

