AutoFocus: Interpreting Attention-based Neural
Networks by Code Perturbation

Nghi D. Q. Bui
School of Information Systems
Singapore Management University
dqnbui.2016 @phdis.smu.edu.sg

Abstract—Despite being adopted in software engineering tasks,
deep neural networks are treated mostly as a black box due to the
difficulty in interpreting how the networks infer the outputs from
the inputs. To address this problem, we propose AutoFocus, an
automated approach for rating and visualizing the importance
of input elements based on their effects on the outputs of the
networks. The approach is built on our hypotheses that (1)
attention mechanisms incorporated into neural networks can
generate discriminative scores for various input elements and (2)
the discriminative scores reflect the effects of input elements on
the outputs of the networks. This paper verifies the hypotheses by
applying AutoFocus on the task of algorithm classification (i.e.,
given a program source code as input, determine the algorithm
implemented by the program). AutoFocus identifies and perturbs
code elements in a program systematically, and quantifies the
effects of the perturbed elements on the network’s classification
results. Based on evaluation on more than 1000 programs for
10 different sorting algorithms, we observe that the attention
scores are highly correlated to the effects of the perturbed code
elements. Such a correlation provides a strong basis for the uses of
attention scores to interpret the relations between code elements
and the algorithm classification results of a neural network, and
we believe that visualizing code elements in an input program
ranked according to their attention scores can facilitate faster
program comprehension with reduced code.

Index Terms—attention mechanisms, neural networks, algo-
rithm classification, interpretability, code perturbation, program
comprehension

I. INTRODUCTION

Deep learning techniques have been adapted for various
software engineering tasks, such as code completion, bug
prediction, and program classification [1]-[5]. Despite high
prediction accuracies achieved, deep neural networks are
mostly treated as black boxes without explanation on why
certain outputs are generated for certain inputs [6]—[8], so that
users lack of confidence in the results. Attention mechanisms
have been proposed [9], [10] for neural networks to focus on
certain input elements or features when making predictions,
and such elements or features are assumed to reflect certain
interpretability of the networks. However, in many cases the
features getting higher attentions may be implicit, and the
prediction outputs of the attention networks according to the
features may disagree with human users’ understanding [11].

In this work, we aim to justify and improve the inter-
pretability of attention-based neural networks with the Aut-
oFocus approach. The key idea of the approach is to reveal
correlations between inputs and outputs of attention networks
by perturbing inputs and observing the effects of perturbed
inputs on the outputs. In this paper, we apply AutoFocus to

Yijun Yu
School of Computing & Communications
The Open University, Milton Keynes, UK
y.yu@open.ac.uk

Lingxiao Jiang
School of Information Systems
Singapore Management University
Ixjiang@smu.edu.sg

the attention networks trained for algorithm classification (i.e.,
networks that classify the algorithm implemented in a given
input program [3]-[5], [12]). It helps correlate attention scores
of certain code elements (e.g., statements) in a program with
the importance of the elements in determining the program’s
algorithm class. Such a correlation provides us a strong basis
for using attention scores of individual statements as a metric
to visualize a program, and helps users in interpreting the
networks’ prediction outputs and understanding the program
with increased focus, saving the need to read through all code.

We combine two techniques to realize AutoFocus:

1) Syntax-Directed Attention: We adapt attention mech-
anisms into the neural networks in the context of al-
gorithm classification, and generate attention scores for
syntactically meaningful elements in input programs (e.g.,
statements), instead of arbitrary elements;

2) Code Perturbation: We systematically perturb input pro-
grams syntactically (e.g., deleting statements one by one)
to observe how the perturbations affect neural networks’
classification outputs and relate to the attention scores.

With respect to tree-based and graph-based algorithm clas-
sification neural networks (TBCNN and GGNN [3]-[5], [12]),
our key research question here is:

Can the syntax-directed attention scores be used as a proxy
to interpret the decisions made by the neural networks?

With evaluation on more than 1000 programs implementing
10 different sorting algorithms, we positively show that the
attention scores of individual statements are strongly correlated
with the effects of the statements on the classification results,
and thus can be used to interpret the input/output behaviour
of the networks. Furthermore, the statements in a program can
be visualized according to their attention scores to facilitate
more focused and faster code comprehension.

More generally, the interpretability produced by the Auto-
Focus approach technically only depends on the availability of
attention scores and the interpretability of code elements that
follow certain syntax, and thus AutoFocus is likely applicable
to many other neural networks for various code learning tasks.

II. RELATED WORK

Interpretability is important for software mining and analy-
sis in general [13]. In other domains, various techniques have
been proposed to interpret machine learning results, such as by
projecting outputs of CNN models through hidden neurons to
input image pixels [14], by quantifying the effects of different

° Attention

Neural
Network

| training

Training programs
Trained

Test program(s) o
Neural

___________ +| Network

2 O .
D= perures

Perturbation programs E
Engine

Perturbed
confidence scores

)
‘ | e pogramte .
oL @

Fig. 1. Overview of AutoFocus approach

compositions of English sentences on NLP models [15], and
by perturbing inputs for black-box neural networks [16].

Our work is unique in that it adapts the ideas of attention
mechanisms and code perturbation to interpret the input/output
effects of algorithm classification neural networks via identi-
fication and visualization of meaningful code elements.

III. AuTOFOCUS APPROACH OVERVIEW

Figure 1 gives an overview of the six major steps in
AutoFocus. Next section explains the steps in more details.
1) Training of attention-based neural networks: We add

additional aggregation layers in conventional classification

neural networks to generate attention scores for input ele-

ments using a global attention mechanism [9], [10]. Given

training programs, we obtain trained attention networks.
2) Generation of classification confidence score c(p) for

a test program p and attention scores a(s) for each

suitable code element s in p: Given a test program p,

the classification confidence score c¢(p) is derived from

the softmax layer of the attention networks, indicating the
likelihood for p to belong to a certain class. For multi-class
classification tasks (e.g., [3]-[5]), there is a confidence
score for each class, while the correct class for p often
but not necessarily has the highest confidence score. In
this work, we always take the confidence score produced
by the trained networks for the correct class of p as
the c(p). Meanwhile, the attention networks produce an
attention score for each input element, and we aggregate the
scores according to p’s syntactical structure and produce an

attention score for each statement s in p, denote as a(s).
3) Perturbation of test program(s): each test program p is

modified into a set of perturbed programs P’ = {p.},

where p’, indicates a perturbed program by deleting the

statement s from p. For each perturbed program p/, we
apply the attention networks to predict its class and obtain

a new confidence score c(p’).

4) Impact measurement of perturbing statements: Given

a set of perturbed programs {p.}, we have a set of

classification confidence scores {c(p.)}. The differences

between ¢(p) and {c(p.)} are denoted as A(p) = {6(s) =
c(pl) —c(p)|s € p}. Intuitively, a higher §(s) may indicate
a statement s that has more impact on the networks’
classification accuracies and thus may be more important.

5) Correlating statement-level attention scores {a(s)} and
perturbed confidence scores {d(s)}: We analyze the
Pearson Correlation Coefficients between the two kinds of
scores for various test programs so that we may use the
perturbed classification confidence scores to justify the uses
of attention scores to interpret the classification decisions
made by the attention networks.

6) Visualization of statements: Given the attention scores
{a(s)} and perturbed confidence scores {d(s)} as a proxy
for the importance of individual statements in a program
p, we visualize p with a spectrum of derived colours to
facilitate focused view on more important statements for
program comprehension.

IV. AuToFocuUsS DETAILS

A. Building Attention Neural Networks

We choose state-of-the-arts tree-based and graph-based neu-
ral networks [3], [4], [12], for they yield accurate outputs for
algorithm classification.

, N

Feed Forward
| | Neural Network

Softmax
Feature Extraction Aggregation

Fig. 2. Attention mechanism as the aggregation layer for the neural network

Figure 2 illustrates the process of adding attention layers
for algorithm classification neural networks. First, source code
is parsed as an AST and a graph by connecting tree nodes
to dependent ones. Then the neural networks are used as
a feature extractor to update the information of each node
following the edges. An aggregation layer is used to combine
the information about all of the nodes into one single vector
as the representation for the code (see Section IV-B).

Since a graph is a more general form of a tree, we summa-
rize the design principle of both TBCNN [3] and GGNN [12]
with graph notations. A graph G = (V, £, X) is composed of a
set of nodes V, a set of node features X, and a list of directed
edge sets € = {(&1, ...,Ek)} where K is the number of edge
types. Initially, we annotate each node v € V with a real-
valued vector x, € RY representing the features of the node.
The node features X come from a pretrained embedding [3].
We associate every node v with a hidden state vector h,,
initialised from pretrained feature embedding x,,.

The process of attention networks can be split into the
feature extraction and the aggregation phases. The feature
extraction phase aims to propagate information from a node
v to its neighbor. Specifically,

e The input to TBCNN is AST which is an undirected
graph. A function f.,n,, aggregates the information of
the direct children of a node v to update its state vector
hy = feonvo(Rehitdren_of v). This process runs through a
few time steps to update the state vector h, of node v.

o The input to GGNN is a graph representation of the AST
plus additional edge types. GGNN can be described as a
message passing network [12], where the “messages of type
k are sent from a node v to its neighbor u. Here k refers
to the type of edges in the edge set £;. The new state of
the node v is computed from its current state vector, its
neighbor, and the edge as: hy, = fi(hy, hu, €x), Where ex
is the edge of type K. We choose a linear function for f
the same as [12].

Once feature extraction finishes, we have a matrix of dimen-
sion m X n, where m is the number of nodes and n is the
length of node feature embeddings. Then, the aggregation
phase combines the hidden state vectors of all nodes in the
graph into one single vector, which computes a feature vector
for the whole graph (or tree) using an aggregation function R,
such that y = R({h,|v € G}), and y is a vector of dimension
1 x n. R can be a max pooling function [3] which takes the
max value of the features. However, it lacks the interpretability
as one does not know which node contributes more to the
classification result. As such, we use an attention mechanism
as the aggregation function instead. The attention layer will
assign a score for each node in the input graph to represent
its importance, which may lead to better interpretability.

1) Aggregation Using Attention Mechanism: Formally, a
global attention vector a € R? is initialised randomly and
learned simultaneously with updates of the networks. Given n
node state vectors: {hy,..., h,}, the attention weight o; of

each h; is computed as the normalised inner product between
oethisa) rpe
>i_iexp(h;Ta)
exponents are used to make the attention weights positive,
and they are divided by their sum to have max value of 1, as
done by a standard softmax function.

An aggregated code vector y € R? represents a whole code
snippet. The vector is a linear combination of the state vectors
{h1, ..., hp} of all nodes contained in the code weighted by
their attention scores: code vector y = 22:1 Qe + he.

2) Objective Function: When training our networks for
algorithm classification, we use the cross entropy as the objec-
tive function. It is defined as J (0, 2, c) = Z(—log%),
where 6 denotes parameters of all the weight matrices in our
model, z is the predicted classification vector for all the class
labels and c is the true label.

the node state vector and a: «; =

B. Deriving Statement-Level Attention Scores

The purpose of this step is to derive attention scores for
code elements at specific levels of granularity. In this work,
we consider the statement level. The attention score for a
statement node in an AST is obtained by a simple summation
of the attention scores of all children of the statement node. For
later visualization of the program source code (Section IV-D),
we also need to map the attention scores of statement nodes to

the actual tokens in the statements. When a token belongs to
multiple nested statements, the attention score of the closest
enclosing statement is used as the score for the token.

C. Code Perturbation

The purpose of this step is to evaluate the effect of each code
element on the networks’ classification results. Here, we focus
on perturbing statements in a program because a statement
may be a reasonable level of granularity for developers to
examine and understand, and because a recent study [4] shows
that splitting ASTs at the statement level achieves better
learning results than some other granularity levels.

We work on trees and graphs to perturb statements: we
traverse the AST of a program to identify the node sequence
corresponding to statements in a post-order, and mutate the
trees and relevant graphs to delete the statement nodes and
related edges one by one. For simplicity in this paper, when a
statement is deleted, all nested substatements are also deleted.
Although the deletion can introduce compilation errors in the
programs (e.g., undeclared variables), the tree- or graph-based
neural networks can still be applied to the perturbed trees and
graphs. To limit the time needed for exploring the deletion of
various combinations of statements, we delete statements in
the greedy post order and only backtracks one statement when
deleting the current statement leads to a wrong classification.

D. Visualisation

We transform the attention scores of statements into colors
to be shown on the foreground of the code tokens contained in
the statements. The rules of thumb for the color transformation
is to ensure that the statements with higher attention scores
get a higher contrast to the background color. Many color
transformation schemes are possible. In this work, we use the
grey scale to present colors from white (attention=0) to black
(attention=1). Since the score of each node ranges from 0 to
1 when we choose the sigmoid function for non-linearity, the
darkness increases when the score is increased and vice versa.

V. EMPIRICAL EVALUATION

We verify the capability of AutoFocus with respect to a
graph-based neural network trained for multi-class algorithm
classfication [12]. The data for the evaluation consists of 1023
unique Java programs crawled from GitHub for 10 distinct
sorting algorithms [5], where about 70% of the programs were
used for training, 10% for validation, and 20% for testing.

First, the settings described in GGNN [12] are used to train
a model of 85% accuracy on the 200 test programs; the model
is used as the ground truth for interpretation. Then, we follow
the steps in Section III to derive attention scores and deltas
of deleting statements for each test program. After that, we
conducted a statistical analysis on the correlation between the
deltas and the attention scores of the statements deleted by
code perturbation. Following Step 5 in Section III, we obtain
the Pearson correlation ratio for each test program. For all
the test programs, a list of Pearson correlation ratios can be
seen as a discrete variable P. Figure 3 shows the histogram of

Frequency

0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Histogram of Pearson Correlation Coefficients of all test data

) \ e
/ \

inti =1, inti=1;
while (i < arrlength) { while (i < arr.length) {
intj =i int j =i
while (j > 0) { while (j > 0) {
if (arr[jl.key < arr[j - 1].key) { if (arr[jl.key < arrfj - 1].key) {
} }
i=i-n i=i-n
} }
i=i+ i=i+

Visualization by Attention Score Visualization by Delta

Fig. 4. AutoFocus visualization of attention scores in Visual Studio Code

P, whose mean value is 0.65 and standard deviation is 0.26.
This indicates a strong correlation between the attention scores
and the deltas. Based on the intuition that statements are a
reasonable granularity for developers to understand a program,
the strong correlation gives us a basis to use attention scores
to interpret neural networks and build code visualizations
for more focused views to facilitate program comprehension.
Figure 4 exemplifies the visualization of attention scores of
statements inside Visual Studio Code IDE. The left pane
visualizes the statements according to their attention scores.
The higher the attention score, the darker color the statement
gets. The right pane visualizes the statements according to
their deltas, which are similar but slightly different.

VI. THREATS TO VALIDITY & FUTURE WORK

Our preliminary evaluation is limited and much future work
can be performed to alleviate various threats to validity.

« We only evaluate AutoFocus for algorithm classification.
The evaluation can go beyond TBCNN and GGNN to many
other neural networks and other software engineering tasks,
such as bug prediction, code search, code summarization.

« Evaluations with real programmers can be more convincing
in validating whether AutoFocus results match the actual
importance viewed by human.

« The attention scores and code perturbation can be applied to
code granularity levels beyond statements, such as expres-
sions, conditions, functions, files, components, and program
slices, for different code analysis tasks.

o The current perturbation deletes one statement at a time. It
may be better to delete multiple code elements at once so
that one can identify the minimal amount of code needed
for correct algorithm classification.

e« More model visualization and interpretability techniques
beyond attention scores (e.g., LIME [17] and gradient-based

measures [11]) can be incorporated into AutoFocus too.

VII. CONCLUSIONS

This paper proposes AutoFocus, a method to interpret
the inference of a deep attention neural network for code
learning tasks. The approach is new in (1) adapting attention
mechanisms into an algorithm classification neural network to
generate attention scores for individual statements in an input
program, and (2) inducing syntax-directed code perturbation to
observe the effects of individual statements on the network’s
classification outputs. It then shows that these two indepen-
dently derived metrics have a strong correlation and can be
used to produce a spectrum visualization of the perturbed
program as a recommendation for programmers to identify
the most relevant code elements when viewing the program.

ACKNOWLEDGMENT

This research is supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1
grant from SIS at SMU, and EPSRC and EU at the Open
University. We also thank the anonymous reviewers for their
insightful comments and suggestions for improving the paper.

REFERENCES

[1] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. A. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Comput. Surv.,
vol. 51, no. 4, pp. 81:1-81:37, 2018.

[2] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Comput. Surv., vol. 50, no. 4, pp. 56:1-56:36, 2017.

[3] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural

networks over tree structures for programming language processing,” in

AAAI, February 12-17 2016, pp. 1287-1293.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel

neural source code representation based on abstract syntax tree,” in

ICSE, 2019.

[5]1 B. D. Q. Nghi, Y. Yu, and L. Jiang, “Bilateral dependency neural
networks for cross-language algorithm classification,” in SANER, 2019,
pp. 422-433.

[6] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in DSAA, 2018, pp. 80-89.

[71 B. Kim, M. Wattenberg, J. Gilmer, C. J. Cai, J. Wexler, F. Viegas, and
R. A. Sayres, “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TCAV),” in ICML, 2018.

[8] D. Alvarez-Melis and T. S. Jaakkola, “Towards robust interpretability
with self-explaining neural networks,” in NeurIPS, 2018.

[9]1 D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” in /CLR, 2015.

T. Luong, H. Pham, and C. D. Manning, “Effective approaches to

attention-based neural machine translation,” in Empirical Methods in

Natural Language Processing (EMNLP), 2015, pp. 1412-1421.

S. Jain and B. C. Wallace, “Attention is not explanation,” in NAACL:

HLT, 2019.

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to

represent programs with graphs,” in /CLR, 2018.

H. K. Dam, T. Tran, and A. Ghose, “Explainable software analytics,” in

ICSE: New Ideas and Emerging Results, 2018, pp. 53-56.

M. D. Zeiler and R. Fergus, “Visualizing and understanding

convolutional networks,” in ECCV, 2014, pp. 818-833.

J. Li, X. Chen, E. H. Hovy, and D. Jurafsky, “Visualizing and

understanding neural models in NLP,” in NAACL HLT, 2016.

R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes

by meaningful perturbation,” in /CCV, 2017, pp. 3429-3437.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”

explaining the predictions of any classifier,” CoRR, vol. abs/1602.04938,

2016.

[4

=

[10]

(11]
[12]
[13]
[14]
[15]
[16]

(17]

